Chapter 3

Differentiation



3.1

Tangents and the
Derivative at a Point
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FIGURE 3.1 The slope of the tangent
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line at P 1s lim fxo ) ~ fx0) .
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DEFINITIONS The slope of the curve y = f(x) at the point P(xg, f(xo)) is the
number

. flxo + h) = f(xo)
m = lim
h—0 h

(provided the limit exists).

The tangent line to the curve at P is the line through P with this slope.
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1
Y=3

slope is -

/

slope 1s —1
atx = —1

FIGURE 3.2 The tangent slopes, steep
near the origin, become more gradual as
the point of tangency moves away

(Example 1).
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slope is 1

/ 4

FIGURE 3.3 The two tangent lines to
y = 1/x having slope —1/4 (Example 1).
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DEFINITION  The derivative of a function f at a point x, denoted f'(xo), is

J'(xo) = lim

provided this limit exists.

fxo + 1) — f(xo)

h
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The following are all interpretations for the limit of the difference quotient,

’ flxo + h) — f(xo)
im .
h—0 h

The slope of the graph of y = f(x) at x = xy
The slope of the tangent to the curve y = f(x) at x = xg

The rate of change of f(x) with respect to x at x = x

P b=

The derivative f'(x() at a point
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3.2

The Derivative as a Function
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DEFINITION  The derivative of the function f(x) with respect to the variable x is
the function f' whose value at x is

f'(x)

provided the limit exists.

lim
h—0

flx + h) — fx)

h

b
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Secant slope is

f@) — f(x)
Q(z, f(2)) T
P(x, f(x)) f@) — fx)
N

|
:<—h =z - x—)—:
| I
J‘c - g=x+ h

Derivative of fat x is

J&x +h) — f(x)

f'(x) = lim A
h—0 FIGURE 3.4 Two forms for the difference
_ quotient.
_ lim f(2) - J(x)
I—X < X
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Alternative Formula for the Derivative

f(z) = f(x)

f/(x) = lim = =%
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FIGURE 3.5 The curve y = Vx and its
tangent at (4, 2). The tangent’s slope 1s
found by evaluating the derivative at x = 4

(Example 2).
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FIGURE 3.6 'We made the graph of y = f’(x) in (b) by plotting slopes from the
graph of y = f(x) in (a). The vertical coordinate of B’ is the slope at B and so on.

In (b) we see that the rate of change of f is negative for x between A’ and D'; the rate
of change is positive for x to the right of D’.
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Slope =

im 1010 = 0
Slope = =0
o flat b~ f@
h—0" h

y =fx)
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FIGURE 3.7 Derivatives at endpoints are
one-sided limits.
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y' not defined at x = 0:
right-hand derivative
# left-hand derivative

FIGURE 3.8 The function y = |x|is
not differentiable at the origin where
the graph has a “corner” (Example 4).
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1. a corner, where the one-sided 2. a cusp, where the slope of PQ approaches
derivatives differ. o0 from one side and — o0 from the other.
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4. adiscontinuity (two examples shown).

3. avertical tangent,
where the slope of PQ
approaches o0 from both

sides or approaches — 00
from both sides (here, —00).
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THEOREM 1—Differentiability Implies Continuity If f has a derivative at
X = ¢, then f is continuous at x = c.
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3.3

Differentiation Rules
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FIGURE 3.9 The rule (d/dx)(c) = 01is
another way to say that the values of
constant functions never change and that
the slope of a horizontal line is zero at
every point.
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Derivative of a Constant Function
If f has the constant value f(x) = c, then
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Power Rule for Positive Integers:
If n 1s a positive integer, then
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Power Rule (General Version)
If n 1s any real number, then

d _
——x" = nx""!

dx

for all x where the powers x”" and x"~ ! are defined.
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Derivative Constant Multiple Rule
If u 1s a differentiable function of x, and c is a constant, then

i(cu) =c

dx dx’
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y
A
\ y=3x
Slope = 3(2x)
= 6x
3 =6(1)=6
y=x*
2
Slope = 2x
1 =2(1)=2
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FIGURE 3.10 The graphs of y = x*and
y = 3x?.Tripling the y-coordinate triples
the slope (Example 2).
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Derivative Sum Rule

If u and v are differentiable functions of x, then their sum « + v is differentiable
at every point where u# and v are both differentiable. At such points,
_du |, dv

d du , dv
dx(u—l—v)—dx-l—dx.
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(0, 2)

1
-1, 1) (1, 1)

FIGURE 3.11 The curve in Example 4
and 1ts horizontal tangents.
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Derivative Product Rule
If u and v are differentiable at x, then so is their product uv, and

A, dv . du
dx(uv)_udx+vdx'
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Derivative Quotient Rule

If u and v are differentiable at x and if v(x) # 0, then the quotient u/v is differ-
entiable at x, and
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3.4

The Derivative as a Rate of Change
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DEFINITION The instantaneous rate of change of f with respect to x at x is

the derivative

flxo + h) — f(xo)

f'(x0) = ]}@0 p

provided the limit exists.

>
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Position at time ¢ ... and at time ¢ + At
|< As >|
-

> §

® ®
s = f(¥) s + As = f(t + Ar)

FIGURE 3.12 The positions of a body
moving along a coordinate line at time ¢
and shortly later at time ¢t + At. Here the
coordinate line 1s horizontal.
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DEFINITION  Velocity (instantaneous velocity) is the derivative of position
with respect to time. If a body’s position at time zis s = f(¢), then the body’s
velocity at time 7 1s

_ds _ St A) — )
dt Ar—0 At )

v(?)
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> [

s decreasing:
negative slope so
moving downward

s increasing:
positive slope so
moving upward

FIGURE 3.13 For motion s = f(¢) along a straight line (the vertical axis),
v = ds/dt is positive when s increases and negative when s decreases. The
blue curves represent position along the line over time; they do not portray

the path of motion, which lies along the s-axis.
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DEFINITION  Speed is the absolute value of velocity.

Speed = |v(?)| =

ds
dt
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FIGURE 3.14 The velocity graph of a particle moving along a horizontal line,
discussed in Example 2.
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DEFINITIONS  Acceleration is the derivative of velocity with respect to time.
If a body’s position at time 7is s = f(¢), then the body’s acceleration at time ¢ is

_dv _ d%
a(t) = i~
Jerk is the derivative of acceleration with respect to time:
o da _ d3
J (t) — dt — d t3 .
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FIGURE 3.15 A ball bearing
falling from rest (Example 3).
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Height (ft)

oy o 1 FIGURE 3.16  (a) The rock in Example 4.
(b) The graphs of s and v as functions of
ol time; s is largest when v = ds/dt = 0.
The graph of s is not the path of the rock:
5 L L It is a plot of height versus time. The slope
of the plot is the rock’s velocity, graphed
_ds _
—160F v= g~ 1603 here as a straight line.
(b)
Slide 3- 40
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Cost y (dollars)
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marginal cost y=cx)
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FIGURE 3.17 Weekly steel production:
c(x) is the cost of producing x tons per
week. The cost of producing an additional
htonsisc(x + h) — c(x).
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FIGURE 3.18 The marginal cost dc/dx is
approximately the extra cost Ac of
producing Ax = 1 more unit.
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dy/dp
2
>
dy
AN )
1+ dp P
y=2p—p*
| 5 >
0 1 P 0 I P
(a) (b)

FIGURE 3.19 (a) The graph of y = 2p — p?,
describing the proportion of smooth-skinned peas in the
next generation. (b) The graph of dy/dp (Example 7).
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3.9

Derivatives of
Trigonometric Functions
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The derivative of the sine function is the cosine function:

d (sinx) = cosx
dx '
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|
|
: y = —sinx
|
|

FIGURE 3.20 The curve y’ = —sinx as
the graph of the slopes of the tangents to
the curve y = cos x.
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The derivative of the cosine function is the negative of the sine function:

i(cosx) = —sinx
dx
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Rest

position
Position at
—5
t=20
Y
S

FIGURE 3.21 A weight hanging from

a vertical spring and then displaced
oscillates above and below its rest position
(Example 3).
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FIGURE 3.22 The graphs of the position
and velocity of the weight in Example 3.
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The derivatives of the other trigonometric functions:

d — cppl d o ar2

x (tanx) = sec”x I (cotx) csce x

4 (secx) = secxtanx 4 (cscx) = —cscxcotx
dx dx

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 3- 50




3.6

The Chain Rule
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C: yturns B: uturns A: x turns

FIGURE 3.23 When gear A makes x
turns, gear B makes u turns and gear

C makes y turns. By comparing
circumferences or counting teeth, we see
that y = u/2 (C turns one-half turn for
each B turn) and u = 3x (B turns three
times for A’s one), so y = 3x/2. Thus,
dy/dx = 3/2=(1/2)(3) =
(dy/du)(du/dx).
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Composite fo g

Rate of change at

xis f'(gx)) - g'(x).

8

Rate of change m
at x is g'(x). at g(x) is f'(g(x)). ®
X u = g(x) y = flu) = f(gx))

FIGURE 3.24 Rates of change multiply: The derivative of f o g at x i1s the
derivative of f at g(x) times the derivative of g at x.
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THEOREM 2—The Chain Rule If f(u) is differentiable at the point u = g(x)
and g(x) is differentiable at x, then the composite function (f ° g)(x) = f(g(x))
1s differentiable at x, and

(f o g)(x) = f'(glx)-g'x).
In Leibniz’s notation, if y = f(u) and u = g(x), then

dy _dy du
dc du dx’

where dy/du is evaluated at u = g(x).
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?: y = sin(x°) = sin ES
1k . e ‘ 180
(\ T AT T A A

AR u

I 180
y =Ssinx

FIGURE 3.25 Sin(x°) oscillates only 77/180 times as often as sin x oscillates. Its
maximum slope is 7/180 at x = 0 (Example 8).
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3.7

Implicit Differentiation
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(.XO, y:;,)‘ y =f3(x)

FIGURE 3.26 The curve

x* + y° — 9xy = 0 is not the graph of
any one function of x. The curve can,
however, be divided into separate arcs that
are the graphs of functions of x. This
particular curve, called a folium, dates to
Descartes in 1638.
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Slope = 1 __1

2y, 2Vx

FIGURE 3.27 The equation y*> — x = 0,
or y2 = x as it is usually written, defines
two differentiable functions of x on the
interval x > (. Example 1 shows how to
find the derivatives of these functions
without solving the equation y? = x for y.
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r St

y; = V25 — x?

> X

3,-4)

J’2=—V25—x2 Slope=—§=%

FIGURE 3.28 The circle combines the
graphs of two functions. The graph of y; is
the lower semicircle and passes through

(3, —4).
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Implicit Differentiation

1. Daifferentiate both sides of the equation with respect to x, treating y as a differ-
entiable function of x.

2. Collect the terms with dy/dx on one side of the equation and solve for dy/dx.
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y? = x* + sin xy

FIGURE 3.29 The graph of

y? = x? + sinxy in Example 3.
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Tangent

Light ray

Curve of lens

_ surface
Normal line

Point of entry

FIGURE 3.30 The profile of a lens,
showing the bending (refraction) of a ray
of light as it passes through the lens

surface.
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FIGURE 3.31 Example 5 shows how to
find equations for the tangent and normal
to the folium of Descartes at (2, 4).
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3.8

Related Rates
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aV _ o #3}min
dt

A

@ _,
d
when y = 6 ft

FIGURE 3.32 The geometry of the
conical tank and the rate at which water
fills the tank determine how fast the water
level rises (Example 1).
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Related Rates Problem Strategy

1. Draw a picture and name the variables and constants. Use t for time. Assume
that all variables are differentiable functions of 7.

2. Write down the numerical information (in terms of the symbols you have
chosen).

3. Write down what you are asked to find (usually a rate, expressed as a derivative).

4. Write an equation that relates the variables. You may have to combine two or
more equations to get a single equation that relates the variable whose rate
you want to the variables whose rates you know.

5. Differentiate with respect to t. Then express the rate you want in terms of the
rates and variables whose values you know.

6. Evaluate. Use known values to find the unknown rate.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 3 - 66




Balloon

% = 0.14 rad/min X
when 6 = 7/4 dy _,
y dt '
when 0 = w/4
Range N
finder 500 ft

FIGURE 3.33 The rate of change of the
balloon’s height is related to the rate of
change of the angle the range finder makes
with the ground (Example 2).
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Situation when
x=038,y=0.6

FIGURE 3.34 The speed of the car is
related to the speed of the police cruiser
and the rate of change of the distance

between them (Example 3).
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FIGURE 3.35 The particle P
travels clockwise along the circle
(Example 4).
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12,000

> X

R

FIGURE 3.36 Jet airliner 4
traveling at constant altitude
toward radar station R
(Example 5).
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0 M 6 ft/sec

FIGURE 3.37 A worker at M
walks to the right pulling the
weight W upwards as the rope
moves through the pulley P
(Example 6).

(b)
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3.9

Linearization and Differentials
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-1 0
0
y = x2 and its tangenty = 2x — 1 at (1, 1). Tangent and curve very close near (1, 1).
1.2 1.003
T A =
0.8 1)1.2 0.997 : 1.003
0.8 0.997
Tangent and curve very close throughout Tangent and curve closer still. Computer
entire x-interval shown. screen cannot distinguish tangent from

curve on this x-interval.

FIGURE 3.38 The more we magnify the graph of a function near a point where the
function is differentiable, the flatter the graph becomes and the more it resembles its

tangent.
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FIGURE 3.39 The tangent to the curve
y = f(x) atx = ais the line

L(x) = f(a) + f'(a)(x — a).

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 3- 74



DEFINITIONS If f is differentiable at x = a, then the approximating function
L(x) = f(a) + f'(a)(x — a)
is the linearization of f at a. The approximation
f(x) = L(x)

of f by L is the standard linear approximation of f at a. The point x = a is the
center of the approximation.
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-1 0 1 2 3 4

FIGURE 3.40 The graphof y = V1 + xandits
linearizations at x = 0 and x = 3. Figure 3.41 shows a
magnified view of the small window about 1 on the y-axis.
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1.1

1.0

0.9 |
-0.1 0 0.1 0.2

FIGURE 3.41 Magnified view of the
window 1n Figure 3.40.
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Approximation True value | True value — approximation |
V12~ 1+ 02;2 = 1.10 1.095445 <1072
\/ﬁ ~ 1+ Ozﬁ = 1.025 1.024695 <1073
V1005 ~ 1+ 290 = 100250 1.002497 SUE
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FIGURE 3.42 The graph of f(x) = cosx
and its linearization at x = /2. Near

x =m/2,cosx ~ —x + (7/2)
(Example 3).
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DEFINITION  Let y = f(x) be a differentiable function. The differential dx is
an independent variable. The differential dy 1s

dy = f'(x) dx.
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>

y =fx)

'/ Ay = f(a + dx) — f(a)

AL = f'(a)dx
RN ,
\

(a + dx, f(a + dx))

(a, f(a))

dx = Ax
When dx is a small change in x,
the corresponding change in

the linearization is precisely dy.

> X

| |
| |
| |
| |
| |
| |
| |
1 |
0 a a+ dx

FIGURE 3.43 Geometrically, the differential dy is the change
AL in the linearization of f when x = a changes by an amount
dx = Ax.
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dr = 0.1

FIGURE 3.44 When dr is

small compared with a, the
differential d4 gives the estimate

Z A(a + dr) = wa* + dA

AA =dA =2madr (Example 6)
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Change in y = f(x) near x = a
If y = f(x) is differentiable at x = a and x changes from a to a + Ax, the
change Ay in f is given by

Ay = f'(a) Ax + € Ax (1)

in whiche = 0as Ax— 0.
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True Estimated
Absolute change Af = f(a + dx) — f(a) df = f'(a) dx

Af df
Relative change —— —
° f(a) f(a)

P t h & X 100 A X 100
ercentage change — —
SIS f(a) f(a)
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Angiography Angioplasty

FIGURE 3.45 To unblock a clogged artery,
an opaque dye 1s injected into it to make the
inside visible under X-rays. Then a balloon-
tipped catheter is inflated inside the artery to
widen it at the blockage site.
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