Chapter 3

Differentiation

3.1

Tangents and the Derivative at a Point

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

DEFINITIONS The slope of the curve y = f(x) at the point $P(x_0, f(x_0))$ is the number

$$m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (p

(provided the limit exists).

The **tangent line** to the curve at *P* is the line through *P* with this slope.

FIGURE 3.2 The tangent slopes, steep near the origin, become more gradual as the point of tangency moves away (Example 1).

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 3.3 The two tangent lines to y = 1/x having slope -1/4 (Example 1).

DEFINITION The derivative of a function f at a point x_0 , denoted $f'(x_0)$, is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

provided this limit exists.

The following are all interpretations for the limit of the difference quotient,

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

- **1.** The slope of the graph of y = f(x) at $x = x_0$
- **2.** The slope of the tangent to the curve y = f(x) at $x = x_0$
- **3.** The rate of change of f(x) with respect to x at $x = x_0$
- 4. The derivative $f'(x_0)$ at a point

3.2

The Derivative as a Function

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

DEFINITION The **derivative** of the function f(x) with respect to the variable x is the function f' whose value at x is

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

provided the limit exists.

FIGURE 3.4 Two forms for the difference quotient.

Alternative Formula for the Derivative

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}.$$

FIGURE 3.5 The curve $y = \sqrt{x}$ and its tangent at (4, 2). The tangent's slope is found by evaluating the derivative at x = 4 (Example 2).

FIGURE 3.6 We made the graph of y = f'(x) in (b) by plotting slopes from the graph of y = f(x) in (a). The vertical coordinate of B' is the slope at B and so on. In (b) we see that the rate of change of f is negative for x between A' and D'; the rate of change is positive for x to the right of D'.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 3.7 Derivatives at endpoints are one-sided limits.

FIGURE 3.8 The function y = |x| is not differentiable at the origin where the graph has a "corner" (Example 4).

1. a *corner*, where the one-sided derivatives differ.

2. a *cusp*, where the slope of *PQ* approaches ∞ from one side and $-\infty$ from the other.

- 3. a vertical tangent, where the slope of PQ approaches ∞ from both sides or approaches $-\infty$ from both sides (here, $-\infty$).
- 4. a *discontinuity* (two examples shown).

THEOREM 1—Differentiability Implies Continuity If f has a derivative at x = c, then f is continuous at x = c.

3.3

Differentiation Rules

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 3.9 The rule (d/dx)(c) = 0 is another way to say that the values of constant functions never change and that the slope of a horizontal line is zero at every point.

Derivative of a Constant Function

If *f* has the constant value f(x) = c, then

$$\frac{df}{dx} = \frac{d}{dx}(c) = 0.$$

Power Rule for Positive Integers:

If n is a positive integer, then

$$\frac{d}{dx}x^n = nx^{n-1}.$$

Power Rule (General Version)

If *n* is any real number, then

$$\frac{d}{dx}x^n = nx^{n-1},$$

for all x where the powers x^n and x^{n-1} are defined.

Derivative Constant Multiple Rule

If u is a differentiable function of x, and c is a constant, then

$$\frac{d}{dx}(cu) = c\frac{du}{dx}.$$

y
y
y =
$$3x^2$$

Slope = $3(2x)$
= $6x$
= $6(1) = 6$
y = x^2
2
Slope = $2x$
= $2(1) = 2$
(1, 1)
 $y = x^2$
2
1
(1, 1)
 $y = x^2$

FIGURE 3.10 The graphs of $y = x^2$ and $y = 3x^2$. Tripling the *y*-coordinate triples the slope (Example 2).

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Derivative Sum Rule

If u and v are differentiable functions of x, then their sum u + v is differentiable at every point where u and v are both differentiable. At such points,

$$\frac{d}{dx}(u+v)=\frac{du}{dx}+\frac{dv}{dx}.$$

FIGURE 3.11 The curve in Example 4 and its horizontal tangents.

Derivative Product Rule

If u and v are differentiable at x, then so is their product uv, and

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}.$$

Derivative Quotient Rule

If u and v are differentiable at x and if $v(x) \neq 0$, then the quotient u/v is differentiable at x, and

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

3.4

The Derivative as a Rate of Change

Copyright @ 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

DEFINITION The **instantaneous rate of change** of f with respect to x at x_0 is the derivative

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

provided the limit exists.

FIGURE 3.12 The positions of a body moving along a coordinate line at time tand shortly later at time $t + \Delta t$. Here the coordinate line is horizontal. **DEFINITION** Velocity (instantaneous velocity) is the derivative of position with respect to time. If a body's position at time t is s = f(t), then the body's velocity at time t is

$$v(t) = \frac{ds}{dt} = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t}$$

FIGURE 3.13 For motion s = f(t) along a straight line (the vertical axis), v = ds/dt is positive when s increases and negative when s decreases. The blue curves represent position along the line over time; they do not portray the path of motion, which lies along the s-axis.

DEFINITION Speed is the absolute value of velocity.

Speed =
$$|v(t)| = \left|\frac{ds}{dt}\right|$$

FIGURE 3.14 The velocity graph of a particle moving along a horizontal line, discussed in Example 2.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

DEFINITIONS Acceleration is the derivative of velocity with respect to time. If a body's position at time t is s = f(t), then the body's acceleration at time t is

$$a(t) = \frac{dv}{dt} = \frac{d^2s}{dt^2}.$$

Jerk is the derivative of acceleration with respect to time:

$$j(t) = \frac{da}{dt} = \frac{d^3s}{dt^3}.$$

FIGURE 3.15 A ball bearing falling from rest (Example 3).

FIGURE 3.16 (a) The rock in Example 4. (b) The graphs of *s* and *v* as functions of time; *s* is largest when v = ds/dt = 0. The graph of *s* is *not* the path of the rock: It is a plot of height versus time. The slope of the plot is the rock's velocity, graphed here as a straight line.

approximately the extra cost Δc of producing $\Delta x = 1$ more unit.

FIGURE 3.19 (a) The graph of $y = 2p - p^2$, describing the proportion of smooth-skinned peas in the next generation. (b) The graph of dy/dp (Example 7).

3.5

Derivatives of Trigonometric Functions

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The derivative of the sine function is the cosine function:

$$\frac{d}{dx}(\sin x) = \cos x.$$

FIGURE 3.20 The curve $y' = -\sin x$ as the graph of the slopes of the tangents to the curve $y = \cos x$.

The derivative of the cosine function is the negative of the sine function:

$$\frac{d}{dx}(\cos x) = -\sin x$$

FIGURE 3.21 A weight hanging from a vertical spring and then displaced oscillates above and below its rest position (Example 3).

FIGURE 3.22 The graphs of the position and velocity of the weight in Example 3.

The derivatives of the other trigonometric functions: $\frac{d}{dx}(\tan x) = \sec^2 x \qquad \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$ $\frac{d}{dx}(\sec x) = \sec x \tan x \qquad \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$

3.6

The Chain Rule

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

C: y turns B: u turns A: x turns

FIGURE 3.23 When gear A makes x turns, gear B makes u turns and gear C makes y turns. By comparing circumferences or counting teeth, we see that y = u/2 (C turns one-half turn for each B turn) and u = 3x (B turns three times for A's one), so y = 3x/2. Thus, dy/dx = 3/2 = (1/2)(3) =(dy/du)(du/dx).

FIGURE 3.24 Rates of change multiply: The derivative of $f \circ g$ at x is the derivative of f at g(x) times the derivative of g at x.

THEOREM 2—The Chain Rule If f(u) is differentiable at the point u = g(x) and g(x) is differentiable at x, then the composite function $(f \circ g)(x) = f(g(x))$ is differentiable at x, and

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x).$$

In Leibniz's notation, if y = f(u) and u = g(x), then

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx},$$

where dy/du is evaluated at u = g(x).

FIGURE 3.25 Sin(x°) oscillates only $\pi/180$ times as often as sin x oscillates. Its maximum slope is $\pi/180$ at x = 0 (Example 8).

3.7

Implicit Differentiation

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 3.26 The curve $x^3 + y^3 - 9xy = 0$ is not the graph of any one function of x. The curve can, however, be divided into separate arcs that *are* the graphs of functions of x. This particular curve, called a *folium*, dates to Descartes in 1638.

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 3.27 The equation $y^2 - x = 0$, or $y^2 = x$ as it is usually written, defines two differentiable functions of x on the interval x > 0. Example 1 shows how to find the derivatives of these functions without solving the equation $y^2 = x$ for y.

FIGURE 3.28 The circle combines the graphs of two functions. The graph of y_2 is the lower semicircle and passes through (3, -4).

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Implicit Differentiation

- 1. Differentiate both sides of the equation with respect to x, treating y as a differentiable function of x.
- 2. Collect the terms with dy/dx on one side of the equation and solve for dy/dx.

FIGURE 3.29 The graph of $y^2 = x^2 + \sin xy$ in Example 3.

FIGURE 3.30 The profile of a lens, showing the bending (refraction) of a ray of light as it passes through the lens surface.

FIGURE 3.31 Example 5 shows how to find equations for the tangent and normal to the folium of Descartes at (2, 4).

3.8

Related Rates

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 3.32 The geometry of the conical tank and the rate at which water fills the tank determine how fast the water level rises (Example 1).

Related Rates Problem Strategy

- **1.** *Draw a picture and name the variables and constants.* Use *t* for time. Assume that all variables are differentiable functions of *t*.
- 2. Write down the numerical information (in terms of the symbols you have chosen).
- 3. Write down what you are asked to find (usually a rate, expressed as a derivative).
- 4. *Write an equation that relates the variables.* You may have to combine two or more equations to get a single equation that relates the variable whose rate you want to the variables whose rates you know.
- **5.** *Differentiate with respect to t*. Then express the rate you want in terms of the rates and variables whose values you know.
- 6. *Evaluate*. Use known values to find the unknown rate.

FIGURE 3.33 The rate of change of the balloon's height is related to the rate of change of the angle the range finder makes with the ground (Example 2).

FIGURE 3.34 The speed of the car is related to the speed of the police cruiser and the rate of change of the distance between them (Example 3).

FIGURE 3.35 The particle *P* travels clockwise along the circle (Example 4).

FIGURE 3.36 Jet airliner *A* traveling at constant altitude toward radar station *R* (Example 5).

FIGURE 3.37 A worker at *M* walks to the right pulling the weight *W* upwards as the rope moves through the pulley *P* (Example 6).

3.9

Linearization and Differentials

Copyright © 2010 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Tangent and curve very close throughout entire *x*-interval shown.

Tangent and curve very close near (1, 1).

Tangent and curve closer still. Computer screen cannot distinguish tangent from curve on this *x*-interval.

FIGURE 3.38 The more we magnify the graph of a function near a point where the function is differentiable, the flatter the graph becomes and the more it resembles its tangent.

FIGURE 3.39 The tangent to the curve y = f(x) at x = a is the line L(x) = f(a) + f'(a)(x - a).

DEFINITIONS If f is differentiable at x = a, then the approximating function L(x) = f(a) + f'(a)(x - a)

is the **linearization** of f at a. The approximation

 $f(x) \approx L(x)$

of f by L is the standard linear approximation of f at a. The point x = a is the center of the approximation.

FIGURE 3.40 The graph of $y = \sqrt{1 + x}$ and its linearizations at x = 0 and x = 3. Figure 3.41 shows a magnified view of the small window about 1 on the *y*-axis.

Approximation	True value	True value – approximation
$\sqrt{1.2} \approx 1 + \frac{0.2}{2} = 1.10$	1.095445	$< 10^{-2}$
$\sqrt{1.05} \approx 1 + \frac{0.05}{2} = 1.025$	1.024695	$< 10^{-3}$
$\sqrt{1.005} \approx 1 + \frac{0.005}{2} = 1.00250$	1.002497	$< 10^{-5}$

FIGURE 3.42 The graph of $f(x) = \cos x$ and its linearization at $x = \pi/2$. Near $x = \pi/2$, $\cos x \approx -x + (\pi/2)$ (Example 3).

DEFINITION Let y = f(x) be a differentiable function. The **differential** dx is an independent variable. The **differential** dy is

$$dy = f'(x) \, dx.$$

FIGURE 3.43 Geometrically, the differential dy is the change ΔL in the linearization of f when x = a changes by an amount $dx = \Delta x$.

FIGURE 3.44 When dr is small compared with a, the differential dA gives the estimate $A(a + dr) = \pi a^2 + dA$ (Example 6).

Change in y = f(x) near x = a

If y = f(x) is differentiable at x = a and x changes from a to $a + \Delta x$, the change Δy in f is given by

$$\Delta y = f'(a) \,\Delta x + \epsilon \,\Delta x \tag{1}$$

in which $\epsilon \rightarrow 0$ as $\Delta x \rightarrow 0$.

	True	Estimated
Absolute change	$\Delta f = f(a + dx) - f(a)$	df = f'(a) dx
Relative change	$\frac{\Delta f}{f(a)}$	$\frac{df}{f(a)}$
Percentage change	$\frac{\Delta f}{f(a)} \times 100$	$\frac{df}{f(a)} imes 100$

Angiography

Angioplasty

FIGURE 3.45 To unblock a clogged artery, an opaque dye is injected into it to make the inside visible under X-rays. Then a balloontipped catheter is inflated inside the artery to widen it at the blockage site.